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Abstract. It is shown that Fermi’s golden rule is valid for any initial state having a very 
narrow energy spread, even if it is not an eigenstate of the ‘free Hamiltonian’. As an 
example, we compute explicitly the tunnelling rate through a rectangular barrier. This 
method may have applications in the Stark effect, autoionisation, fission, and similar 
problems. 

1. Formulation and solution of the problem 

A familiar problem of quantum theory is the calculation of the energy levels and decay 
rates of metastable systems, such as in the Stark effect or the anharmonic oscillator. It is 
somewhat frustrating that the real part of the energy can be easily evaluated by 
perturbation theory, with reasonable accuracy, but its imaginary part (the decay rate) 
cannot, with a few exceptions (Benassi et al 1979). 

The reason for this difficulty is the following. In the standard treatment, one writes 
H = HO + V and HO is chosen in such a way that the equation HOU, = Emu, can be 
solved explicitly. The Schrodinger wavefunction is then written as 

(1) I/I = 1 u,(t)u, exp(-iE,t). 

Moreover it is assumed that 
(a) the initial state 4 is an eigenfunction of Ho, say uo, and 
(b) in the Schrodinger equation 

iak = 1 Vkm exp[i(Ek -E,)t]a, (2) 

it is possible to neglect the product Vkmam for k # 0 # m. Here Vkm denotes as usual the 
matrix element (uk, Vu,). 

These two assumptions are usually incompatible. For example, consider the 
following barrier penetration problem: 

-1 d2 
H = - 2 + v, + VI + v2, 

2m dx 

where Vo is a positive constant and 

v,= - voe(a - / X I ) ,  
v2= - voe(lxi-b).  
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Here 8 denotes the unit step function and it is assumed that b > a ,  

ma2VO>>1,  

and 

m ( b  - a)’ Vo >> 1, 

i.e. we have a large potential well for 1x1 < a, surrounded by a thick and high barrier 
extending up to 1x1 = b. The particle is initially trapped in the well, e.g. 4 may be the 
ground state of H - Vz.  We are therefore tempted to identify Ho = H - V2, so that 
v= V’. 

Assumption (b) above thus implies that we can neglect all the matrix elements of V2, 
except those related to the ground state of H -  V2. Now, if this were true, we could 
derive the golden rule in the usual fashion (Schiff 1949) but the latter would give a zero 
result, because H - V2 (which plays the role of Ho) has no continuum of states in the 
vicinity of its ground state! Since we know that tunnelling is certainly possible, it 
appears that assumption (b) cannot hold with this choice of a,: even though each term 
in the sum (2) is small, the latter may converge so slowly that it cannot be restricted to 
the m = 0 term. 

It is not difficult to guess the cause of the trouble. The Hamiltonian H has indeed a 
continuum of eigenstates with energies close to Eo, but these states resemble more the 
eigenstates of H - V1 than those of H - V2. With these states as the basis and VI as the 
perturbation, the sum (2) should converge very well. We shall therefore identify 
Ho = H - V1 (rather than H .- V2). But then the initial state 4 is not an eigenstate ofHo. 

Another example, more realistic than (3), is autoionisation or resonant scattering of 
electrons by atoms (O’Malley and Geltman 1965, Miller 1966). Consider for instance 
the decay of an excited state of the helium atom: He* + He* +e. In this case, Ho should 
represent the Me’ ion plus the kinetic energy of the outgoing electron, and the initial 
metastable state He* is not ai all an eigenstate of Ho. 

Our task is to investigate the Schrbdinger equation (2) under no other assumption 
than that the initial state has a very small AH. First, we note that 

C Vkrnam exp(-iE,,t) = C ( ~ k ,  VUm)(Um, $1 = ( ~ k ,  W), (8) 

so that the Schrodinger equation can be written (still exactly) as 

iuk = (uk ,  VI//) exp(iEkf). 

We now replace 9, in the KHS of (9), by exp(-iEot)4, where Eo = (#? 

a good approximation, if AH is small. We thereby obtain 
This must be 

(10 )  idk = V k O  exp[i(Ek -Eo)t],  
where v k o  = (uk ,  V4). This result is valid to first order in V. Integration of (10)  yields 

( 1.3. ) 

which can now be substituted back into the RHS of (2), giving uk correct to second order 
in V: 

exp[i(E, -- E,)t] - 1 
idk = Vkm exp[i(Ek - E,)t] a,(O) - V,O----- 

E m  -EO 
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This in turn can be used to evaluate the decay rate 

or 

r- - 2 Re dk(0)uk, 

the last expression being valid for a k  5 ak(0). 
As Vkm is Hermitian, the first term in the braces in (12) does not contribute to r. In 

the second term, the expression Edk(O) Vkm is simply vm0, because of (8), and we obtain 

r = 2cIVm012 sin[(Em -Eo) t ] / (Em -Eo).  (15) 

This result is similar to the one derived in elementary time-dependent perturbation 
theory (Schiff 1949) and again leads to Fermi’s golden rule. The latter therefore 
remains valid even if the initial state is not an eigenstate of Ho, provided only that AH is 
very small. It is however essential to split H correctly into Ho+ V: some of the 
eigenstates of Ho must resemble as much as possible the final state of our system (after 
the decay). 

2. Example: tunnelling through a rectangular barrier 

As an example, let us compute for the barrier penetration problem defined by 
equations (3)-(7). The initial state 4 will be the ground state of H -  Vz. This is the 
standard one-dimensional square well. We write 

4 = A  cos kx, 

= B e-Kx, 
1x1 <a,  

1x1 > a. 

The energy 

Eo = k 2 / 2 m  = Vo- ~ ’ / 2 m  

is found by requiring 4’14 to be continuous at x = a. This gives 

k tan ka = K ,  (18) 
whence k = ~ / 2 a  and A = a-‘”, if (6) holds. 

Likewise, the even eigenfunctions of Ho = H - VI are 

+ = C cosh K X ,  1x1 < b, 
= D  cos(klxI+S), lx l>b .  

Requiring +’I$ to be continuous at x = b yields 

K tanh Kb = - k tan(kb + S), 
which is a relationship between 6 and E. For the purpose of normalisation, it is 
convenient to enclose the system in a large ‘box’ -L < x < L, which makes the energy 
levels discrete. For example, we may assume that +(-L) = +(L) = 0 and get, besides 
(20), 

k L + S  = (n +;)T (21) 
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where rz is an integer. Now, for L >> b, the energy levels are very closely spaced and 
equation (20) shows that 8, which is a continuous function of E,  will change very little 
from one level to the next. Consecutive energy levels thus have Ak = r/L and there are 

p (E)dE  = (m/2E)’I2(L/.ir)dE (22) 

energy levels between E and E + dE. It is readily seen that the normalisation constant is 
D = L-1’2. Therefore 

C = D cos(kb +S)/cosh K b  = ( ~ ~ / K J L )  e--Kb, (23) 

by virtue of (20) and of K >> k, which follows from (6). 
We are now ready to apply the golden rule, with V = VI, defined by (4). We have 

($, V4)= - VOACI a COS kx cosh KX dx. 
-a 

The integral is readily evaluatedt as k sin ka eKa/mVo by using (17) and (18) and we 
finally obtain 

/2  m 2a v0. (25) 3 - 2 ~ ( b - a )  r = 2.ir~(E0)/(4, V4)I2 = .ir e 

Note that although this result was obtained by a variant of perturbation theory, it cannot 
be expanded in positive powers of Vo. Such an expansion would of course violate (6) 
and (7). 

As a check, we may also compute r by the Gamow (1928) complex energy method 
which essentially amounts to finding the poles of the scattering amplitude. We now take 
the complete Hamiltonian (3) and write the wavefunction as 

4 = A cos kx, XGU, 

= B(eKX + Ce’-KX), 

= D eikx, x s b .  

a G x s b, 

We require (cl’/$ to be continuous at x = a and x = b, eliminate C from the two resulting 
equations and get 

= 1 - 2 ( 1 + 2 i k / ~ )  e-2K(b-a), (28) 

the last step because I K I  is large. However, the imaginary part of K is very small, and it 
follows that 

Im(tan ka)  = -4  e-K(b-a’ (29) 
or 

Im(ka) = -4  e-K(b-a)/(l +tan2 ka)= -4 e-K(b-a)k2/K2, (30) 

by virtue of (18). Thus finally 

-=- (6, k r3 e-K(b-a) 
2 m 4m2a4vo  ’ Im - =--Im(k)= r 

t This is an oversimplified argument. Actually, we could compute (#, Vq5) by using an arbitrary E for JI. In 
other words, k and K in (19) need not be the same as k and K in (18). However, if we are interested only in the 
final formula (25), we may immediately take E in $ ( E )  as the mean energy of state 6. 
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in agreement with (25). The same result was also obtained by Lubenets (1977) by 
directly integrating the time-dependent Schrodinger equation. See also Emch and 
Sinha (1979) for a different method. 

Acknowledgments 

I am grateful to J Zak for suggesting this problem and to J R Klauder for the hospitality 
of Bell Laboratories (Murray Hill) where part of this work was carried out. 

References 

Benassi L, Grecchi V, Harrell E and Simon B 1979 Phys. Rev. Lett. 42 704 
Emch G G and Sinha K B 1979 J. Math. Phys. 20 1336 
Gamow G 1928 Z. Phys. 51 204 
Lubenets E R 1977 Teor. Mat. Fir. 32 279 (transl. Theor. Math. Phys. 32 741) 
Miller W H 1966 Phys. Rev. 152 70 
O’Malley T F and Geltman S 1965 Phys. Rev. A137 1344 
Schiff L I 1949 Quantum Mechanics (New York: McGraw-Hill) pp 189-93 


